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Abstract
The doping dependent isotope effect on the critical temperature (Tc) is calculated for
multi-band multi-condensate superconductivity near a 2.5 Lifshitz transition. We consider a
superlattice of quantum stripes with finite hopping between stripes near a 2.5 Lifshitz
transition for the appearance of a new sub-band making a circular electron-like Fermi surface
pocket. We describe a particular type of BEC (Bose–Einstein Condensate) to BCS
(Bardeen–Cooper–Schrieffer condensate) crossover in multi-band/multi-condensate
superconductivity at a metal-to-metal transition that is quite different from the standard
BEC–BCS crossover at an insulator-to-metal transition. The results show that the isotope
coefficient strongly deviates from the standard BCS value 0.5, when the chemical potential is
tuned at the 2.5 Lifshitz transition for the metal-to-metal transition. The critical temperature Tc
shows a minimum due to the Fano antiresonance in the superconducting gaps and the isotope
coefficient diverges at the point where a BEC coexists with a BCS condensate. In contrast Tc
reaches its maximum and the isotope coefficient vanishes at the crossover from a polaronic
condensate to a BCS condensate in the newly appearing sub-band.

(Some figures may appear in colour only in the online journal)

1. Introduction

In this work we focus on the isotope effect in nanostructures
forming superlattices, where multicomponent superconduc-
tivity appears because of sub-bands due to quantum size
effects. The electron wavefunctions for each sub-band are
obtained by solving the Schrödinger equation for a one-
dimensional modulated potential barrier. The k-dependent and

energy dependent superconducting gaps are calculated us-
ing the k-dependent anisotropic Bardeen–Cooper–Schrieffer
(BCS) multi-gap equations. The key ingredient to solve the
problem near a band edge is that the BCS multi-gap equation
is solved jointly with the density equation, according with
the Leggett approach currently used in ultracold fermionic
gases. This scenario has been inspired by new experiments in
cuprates discussed below, but the model points at predicting
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new results on synthetic heterostructures. Therefore, in the
first part of the introduction (Experiments) we introduce
the novel emerging experimental scenario for the complex
nanostructure of cuprates, while in the second part of
the introduction (Theory) we present our theoretical model
pointing to predict isotope effect in metallic nanostructures.

1.1. Experiments

While for many years most of the mechanisms proposed
for high-temperature superconductivity have assumed a
homogeneous lattice, recently, new experimental results have
shifted the theoretical research toward complex materials
showing multi-band/multi-condensate superconductivity. Fol-
lowing the discovery by ‘quantum oscillations’ experiments
of the presence of a small electron Fermi surface [1]
in cuprates, the community has considered the possibility
of multi-band/multi-condensate superconductivity in charge
density wave metals or spin density wave metals. The
fundamental theoretical problems in this new scenario are
similar to the superconductivity in ultra-narrow materials,
where multi-band superconductivity is generated by quantum
size effects due to the material lattice structure. These
new results have supported previous results regarding the
short-range lattice structure in cuprates showing deviations
from the simple average structure. Experimental fast and
local structural methods, such as extended x-ray absorption
fine structure (EXAFS) [2], and x-ray absorption near-edge
structure (XANES) [3], applied to cuprates [4, 5], reported
below T∗ the appearance of an incommensurate modulation
of local lattice distortions. This incommensurate lattice
modulation of the CuO2 plane [7] is related with the
lattice misfit strain between layers [8, 9], measured by the
contraction of the Cu–O bond distance from the equilibrium
distance of 197 pm [10]. The lattice modulation was assigned
to self-organization of pseudo-Jahn–Teller polarons above a
critical value of the misfit strain [11, 12]. The 1D lattice
modulation was proposed to induce a periodic potential of
1D potential barriers in the superconducting planes [16,
17]. A 1D lattice modulation has been found also in
pnictides [13], and evidence is accumulating for a 2.5 Lifshitz
transition associated with a vanishing Fermi surface in
electron-doped iron chalcogenides [18, 19], in diborides [14]
and electron-doped cuprates [20].

In these materials the microscopic theory is very complex
due to strong electron correlations, d-wave gaps and structural
inhomogeneity [21, 22] made of scale invariant networks
of superconducting grains [23, 24]. This scenario has been
recently observed by imaging lattice fluctuations using nano
x-ray diffraction [25, 26, 6] in La2CuO4+y, where each
superconducting grain of the network is tuned near the shape
resonance in superconducting gaps [27]. Moreover, the Fermi
energy in the Fermi surface pocket in YBa2Cu3O6+y [1] is
of the order of 35–40 meV. Remarkably, this very small
Fermi energy EF is of the order of the maximum value of the
superconducting gap1measured at low temperature below Tc
(1/EF ≈ 1) by angle-resolved photo-emission spectroscopy
(ARPES) and scanning tunneling microscopy (STM). These

Figure 1. The doping dependent isotope coefficient α (filled
squares) and the critical temperature (open circles) of
La2−xMxCuO4 (M = Sr in the lower panel, M = Ba in the upper
panel) as a function of hole doping δ [30, 31]. The isotope
coefficient for Tc is measured by oxygen isotope substitution, by
replacing 16O with 18O, and shows a pronounced maximum for both
compounds near doping 1/8.

results suggest that the Fermi level is very close to a band
edge of one of the multiple Fermi surfaces.

The isotope coefficient, α, of the superconducting
critical temperature is close to 0.5 in conventional BCS
superconductors [28] and independent of the shift of the
chemical potential. This result depends on the assumption
of a single Fermi surface where the Fermi level is far
from the band edge and the attractive pairing mechanism is
mediated by phonons. The experiments clearly show that this
is not the case in cuprate high-temperature superconductors,
where the isotope coefficient is doping dependent and
nearly zero at optimum doping [29–36, 38–40]. This almost
vanishing value of α has been considered key evidence
for an unconventional non-phononic pairing mechanism in
high-temperature superconductors [37, 41]. We consider
the available experimental isotope effect in La2−xMxCuO4
(M = Sr, Ba) [29–36, 38–40], since they show a single
superconducting layer with the stripe phase at 1/8. The
isotope coefficient behavior in La2−xMxCuO4 (M = Sr, Ba)
has a very particular doping dependence [29–33], as shown
in figure 1. It exhibits a strong anomaly, clearly shown
near doping 1/8 in figure 1, where the isotope coefficient
peak reaches a value close to or larger than 0.5. In these
La2−xMxCuO4 systems the stripe phase is well established
to appear at 1/8 doping. The large isotope effect supports
the involvement of the lattice dynamics in the pairing,
but in a nontrivial way. The problem is very complex
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since there are also effects of the isotope substitution on
the electronic structure [42] and on the stripe phase [5].
The isotope coefficient α is expected to increase near
the insulator-to-metal transition, where the polaron scenario
is dominant [63], but the sharp anomaly at a particular
doping indicates that the isotope coefficient shows a different
anomaly related to the metallic stripe phase. The isotope
effect has been discussed near a van Hove singularity in a
single 2D band [43, 44] and in the frame of multi-band or
multi-gap superconductivity far from band edges [45, 46], but
there are theoretical efforts lacking on the investigation of the
anomalous isotope coefficient in a multi-band superconductor
near a band edge.

1.2. Theory

Inspired by the controversial discussions on this important
topic by the scientific community, we focus in this
paper on the generic features of the isotope effect in
a multi-condensate superconductor near a band edge that
can be tested in synthetic nanostructures and in the 2D
electron gas at oxide interfaces. Multi-band multi-condensate
superconductivity [47–49, 46] is usually considered for two
coupled BCS condensates, where in the normal phase the
Fermi energy is far from all band edges. The shape resonance
in the superconducting gaps [47] is a type of Fano resonance
between different pairing channels that occurs in multi-band
metals where the chemical potential is driven at a 2.5 Lifshitz
transition. The 2.5 Lifshitz transition in the proximity of
a vanishing Fermi surface in a multi-band metal has been
widely studied in the physics of Fermi surface topology in
metals [50–53]. The shape resonances in superconducting
gaps have been shown to occur in a single 2D ultra-thin
metallic layer [54] and in a metallic stripe with 1D sub-bands
or mini-bands [55, 56]. In 3D multilayer materials [57, 58, 14,
15], and in a superlattice of stripes [16, 17], the superlattice
reduces quantum fluctuations in low dimensions and the
high-Tc coherent phase can be realized. The Tc amplification
is controlled by the Lifshitz energy parameter, measuring the
energy difference between the chemical potential and the 2.5
Lifshitz transition. The maximum Tc is reached where the
Lifshitz energy parameter is of the order of the energy cutoff
for the pairing interaction [47, 14, 15].

In this work, we investigate a model of a superlattice
of quantum stripes near a 2.5 Lifshitz transition. The
fraction of the superconducting condensate originated by this
small pocket has a quasi-bosonic character and is located
in the crossover regime of the BCS–BEC (Bose–Einstein
Condensation) crossover, a phenomenon which is intensively
studied in ultracold fermions [59–61].

Therefore, our model can reproduce the formation of
a quasi-bosonic condensate in the phase space where the
small pocket appears. This type of BCS–BEC crossover is a
generic feature of multi-band/multi-condensate superconduc-
tors when the chemical potential is tuned close to the bottom
of one of the bands and the pairing is strong enough to open
gaps of the order of the (small) Fermi energy.

While the standard BCS–BEC crossover [62, 63] has
been studied in single-band metals, the present model
provides a new scenario where the BCS–BEC crossover
occurs in a multi-gap superconductor. Here, a first BCS
condensate with order parameter 11 in a large Fermi
surface coexists with a second Bose-like condensate with
order parameter 12 in a second small electron pocket.
Pair fluctuations and their screening in the multi-gap and
multi-band (or multi-patch) models have been discussed also
in the context of the physics of cuprates [64, 65].

In our model the Josephson-like coupling between the
two condensates is a contact nonretarded interaction due
to pair exchange mechanisms, which can be attractive or
repulsive. The intraband pairing is mediated by an effective
attraction, having the momentum and energy structure of the
electron–phonon interaction in the BCS approximation. Note
that in the case of electronic mechanisms, such as exchange
of spin fluctuations (paramagnons), the repulsive interaction
transforms in an attractive pairing thanks to the d-wave
symmetry of the superconducting order parameter, because
the characteristic (large) wavevector of the paramagnon
connects states on the Fermi surface with opposite sign of
the order parameter. Therefore both phononic and electronic
mechanisms can be included in the model by an effective
attractive interaction.

2. Model and methods

To investigate the response of the isotope effect at the Lifshitz
transition, we consider the simplest physical model that grabs
the essential physics of a superlattice of metallic stripes
separated by a potential barrier [57, 4, 7, 11, 12, 55, 16] that
makes a periodic potential in the 2D metallic layer,

W(y) =
+∞∑

n=−∞

Wb(y− nlp), (1)

where Wb(y) = −Vb for | y |≤ L/2 and Wb(y) = 0 for
L/2 <| y |< lp/2, where L is the width of the confining well
and lp is the periodicity of the superlattice in the y direction.

The confining potential of equation (1) generates a band
structure organized in mini-bands. This model allows us to
simulate an electronic structure near the 2.5 Lifshitz transition
for the appearance of a 2D FS. The Fermi surface topology
changes by tuning the Fermi level EF below the bottom of
the second superlattice mini-band E2, where the superlattice
FS (see figure 2) is made of a single FS of 1D character:
the two open corrugated lines. The Fermi surface changes by
tuning the Fermi level EF above the bottom of the second
superlattice sub-band E2, where a second closed FS of 2D
character appears beyond the first 1D mini-band (see figure 2).
This is determined by the quasi-free electron dispersion of the
second sub-band E2D

2,k = E2 + E(ky) + k2
x/2m, where E(ky)

is the energy dispersion in the y direction of the periodic
potential W(y) of the superlattice (here and in the following
the reduced Planck constant is set to unity). The second closed
Fermi surface changes its 2D topology into a 1D topology
with isoenergetic open corrugated lines in the x direction,
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Figure 2. The evolution of the Fermi surface (FS) in our model for the striped phase that simulates a 2.5 Lifshitz phase transition (PL)
where a new detached electron-like Fermi surface appears. The inset of the left panel FS shows the lattice structure of a superlattice of
stripes with finite hopping probability between stripes. Ec is the energy of the bottom of the second mini-band. The chemical potential is
tuned from below (left panel δ < PL) to above Ec (central panel δ > PL), where a new small 2D closed electron Fermi surface appears (red
circle). The right panel shows the FS beyond the electronic topological transition (ETT) of the second band from a 2D FS to a corrugated
1D FS at higher doping, called 2D–1D ETT.

above the energy threshold E2D−1D − E2 = ξ , where ξ is the
energy band dispersion in the y direction and E2D−1D is the
energy where the topology of the FS changes from 2D to 1D.
Therefore in our model we tune the Fermi level in the energy
range E2 < EF < E2D−1D. Multi-gap superconductivity in the
energy range E2 − ξ < EF < E2 + ξ requires the theoretical
approach we have recently proposed for a superlattice of
superconducting layers [14, 15], which is capable of going
beyond the standard BCS approximations, which consist of a
single band, a large Fermi surface, a high Fermi energy, and a
constant density of states (DOS) above and below EF.

We consider a 1D periodic potential barrier of width
B and wells of width L in the y direction with periodicity
lp = L + B = 1.9 nm and constant along the x direction.
The potential barrier is fixed at Vb = 1400 meV. We note
that small variations of lp and of other parameters of the
potential do not influence the main results of this work. The
strength of the potential barrier Vb is important to determine
the 1D–2D-dimensional crossover. The present choice of
the periodic potential gives a band dispersion ξ = 50 meV.
The band dispersion ξ is two times the electronic hopping
integral ty in the direction y, which is much smaller than
the hopping integrals tx in the x direction. Solving the
Schrödinger equation for the 1D periodic potential barrier of
equation (1), we obtain the wavefunctions of the electrons
with a free electron band dispersion along the stripe direction
and tight-binding mini-bands in the transverse direction. The
eigenvalues are labeled by three quantum numbers E = εn,kx,ky

where n is the mini-band index, and kx and ky are the
components of the electron wavevectors in the superlattice.
The DOS as function of the energy shows a jump at
Eedge = E2 and a sharp peak at E2D−1D. The superconducting
phase occurs because of the presence of attractive intraband
electron–electron effective interactions (1, 1) and (2, 2) in
the first and second band respectively and the interband
exchange-like interactions (1, 2) and (2, 1). The cutoff
energies of the interactions are symmetrically fixed around the
Fermi surface and the value of the effective coupling has been
fixed at λ = 1/3. In the BCS approximation, i.e., a separable
interaction in wavevector space, the gap parameter has the
same energy cutoff as the interaction. Therefore it has a value
1n,ky around the Fermi surface in a range of energies equal

to the energy cutoff, depending on the mini-band index n and
the superlattice wavevector ky. The self-consistent equation
for the ground-state (T = 0) energy gap 1n,ky is:

1n,ky

= −
1

2N

∑
n′,k′y,k′x

Vn,n′

k,k′1n′,k′y√
(En′,k′y + εk′x − µ)

2 +12
n′,k′y

, (2)

where N is the total number of wavevectors in the discrete
summation, µ is the chemical potential, Vn,n′

k,k′ is the effective
pairing interaction

Vn,n′

k,k′ = Ṽn,n′

k,k′θ(ω0 − |En,ky + εkx − µ|)

× θ(ω0 − |En′,k′y + εk′x − µ|) (3)

calculated taking into account the interference effects between
the wave functions of the pairing electrons in the different
mini-bands, where n and n′ are the mini-band indices, ky(k′y)
is the superlattice wavevector and kx(k′x) is the component of
the wavevector in the stripe direction of the initial (final) state
in the pairing process, and

Ṽn,n′

k,k′ = −
λn,n′

N0
S

×

∫
S
ψn′,−k′y(y)ψn,−ky(y)ψn,ky(y)ψn′,k′y(y) dx dy, (4)

where N0 is the DOS at EF for a free electron 2D system,
λn,n′ is the dimensionless coupling parameter, S = LxLy is the
surface of the plane and ψn,ky(y) are the eigenfunctions in
the superlattice of quantum stripes. The gap equations have
been solved iteratively. We obtain anisotropic gaps strongly
dependent on the mini-band index and weakly dependent on
the superlattice wavevector ky. According with Leggett [62],
the ground-state BCS wave function corresponds to an
ensemble of overlapping Cooper pairs at weak coupling (BCS
regime) and evolves to molecular (non-overlapping) pairs
with bosonic character. The point is that the BCS equation for
the gap has to be coupled to the equation that fixes the fermion
density: with increasing coupling (or decreasing density),
the chemical potential µ results as strongly renormalized
with respect to the Fermi energy EF of the noninteracting
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system, and approaches minus half of the molecular-binding
energy of the corresponding two-body problem in the vacuum.
Therefore, in order to correctly describe the case of the
chemical potential near a band edge, where all electrons in
the newly appearing band condense, forming a bosonic-like
gas in the second sub-band, the chemical potential in the
superconducting phase is renormalized by the gaps opening
at any chosen value of the charge density ρ:

ρ =
1

LxLy

Nb∑
n

∑
kx,ky

1−
En,ky + εkx − µ√

(En,ky + εkx − µ)
2 +12

n,ky


=

δky

π

Nb∑
n=1

π/lp∑
ky=0

∫ εmin

0
dε

2N(ε)

Lx
+

∫ εmax

εmin

dε
N(ε)

Lx

×

1−
En,ky + εkx − µ√

(En,ky + εkx − µ)
2 +12

n,ky

 , (5)

where

εmin = max[0, µ− ω0 − En,ky ],

εmax = max[0, µ+ ω0 − En,ky ],

N(ε) =
Lx

2π
√

ε
2m

,

and Nb is the number of the occupied mini-bands, Lx and Ly
are the size of the considered surface and the increment in ky is
taken as δky = 2π/Ly. We compute the critical temperature Tc
of the superconducting transition solving the linearized BCS
equations

1n,ky = −
1

2N

∑
n′,k′

Vn,n′

k,k′
tanh(

En,ky+εkx−µ

2Tc
)

En,ky + εkx − µ
1n′,k′y , (6)

where the energy dispersion is measured with respect to
the chemical potential. The iterations are stopped when a
convergence factor of 10−6 has been reached, starting with a
trial temperature T1 and finding the Tc by the Newton tangent
method to solve the implicit integral equation for Tc. The Tc
is evaluated as a function of the chemical potential in the
proximity of the edge of the second mini-band. The tuning of
the chemical potential is measured by the Lifshitz parameter
z = (µ− E2)/ω0, where E2 is the bottom of the second band
and ω0 is the energy cutoff for the pairing interaction.

3. The isotope coefficient

The gaps, the Tc and the gap to Tc ratios have been plotted
as a function of the Lifshitz energy parameter in the range
−1 < z < +1, as shown in figure 3. We obtain the minimum
of Tc, where µ is tuned in the BEC regime in the newly
appearing circular Fermi surface in the range −1 < z < 0,
depending on the strength of the Josephson-like coupling
term. The maximum of Tc occurs where the topology of
the FS of the second sub-band shows the 2D–1D electronic
topological transition. This result is assigned to the shape
resonance in the two superconducting gaps controlled by the

Figure 3. (a) The superconducting gaps in the first and second
mini-bands normalized to the maximum value of the gap in the
second mini-band; (b) the critical temperature Tc normalized to its
maximum value; (c) and the gaps to Tc ratios for the two gaps as a
function of the Lifshitz parameter z = (µ− E2)/ω0 compared with
the standard BCS value of 3.5.

exchange-like pair-transfer (or Josephson-like) pairing, which
shows a minimum (maximum) of Tc at the antiresonance at
z = −1 (resonance at z = 1) due to the negative (positive)
quantum interference effects typical of the shape resonances
in the superconducting gaps.

The isotope coefficient α = ∂lnTc/∂lnM is calculated
with the assumption of an energy cutoff of the interaction
dependent on the isotopic mass as ω ∝ M−1/2. In figure 4
we report the calculated isotopic coefficient α as a function of
the chemical potential that strongly deviates from the standard
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BCS value α = 0.5. We find the maximum of Tc and the
minimum of α at the shape resonance µ = E2D−1D, i.e., at
z = 1 in figures 3 and 4. In contrast, by tuning the chemical
potential at the 2.5 Lifshitz transition for the appearance of
the second circular Fermi surface, i.e., at the band edge of the
second mini-band µ = E2, we find a large value of α � 0.5
and a drop of Tc, in agreement with the experimental data.
The isotope coefficient has been calculated by considering the
cases where only one of the intraband pairing energies ω11 ∝

M−1/2 or ω22 ∝ M−1/2 and the interband pairing energy is
isotope dependent or independent. The best agreement with
the experimental data reported in figure 4 is obtained for
the case where both intraband pairing energy ω11 ∝ M1/2

and ω22 ∝ M1/2 are isotope dependent and the electronic
interband energy is isotope independent. Note that, at the
Lifshitz phase transition (z = 0), both α and the gap to Tc
ratios in both bands get exactly the conventional BCS values.
This is the crossing point between the Bose-like regime, where
12 is smaller than 11 but larger than µ − E2 (i.e., the Fermi
surface in band 2 is destroyed by the gap opening), and the
BCS-like regime, where12 is larger than11 but smaller than
µ − E2 (i.e., the Fermi surface in band 2 is only partially
smeared by the gap opening).

It is interesting that our results reproduce well the
anomalous variation of the isotope coefficient and the critical
temperature Tc versus doping in cuprates, as shown in figure 4.

4. Discussions and conclusions

We have obtained an interesting asymmetric feature of the
chemical potential dependence of Tc and α in a superlattice of
quantum wires tuned at a 2.5 Lifshitz topological transition.
The energy cutoff ω0 of the effective pairing interaction
considered in our model determines the width of the shape
resonance in the superconducting gaps and the small value
of the isotope coefficient in the flat region of its doping
dependence, well below the standard BCS value of α =
0.5, where Tc has a maximum. We find the maximum
Tc when the chemical potential is tuned near the 2D–1D
electronic topological transition of the second sub-band
(where the Lifshitz parameter assumes the value z = 1). The
maximum value of the isotope coefficient is reached at the
2.5 Lifshitz transition, in the range of the Fano antiresonance,
where Tc is strongly suppressed. Interestingly, the ratios
between the gaps and Tc in different sub-bands cross the
conventional BCS ratio value (=3.5) at the 2.5 Lifshitz
transition, while sizable deviations from the conventional
value are obtained in our calculations above this transition, in
the range 1 < z < 2 accessible to experiments. The present
results have an impact on the physics of superconductivity
in nano-sized superconductors [37, 41, 56], where the shape
resonance in superconducting gaps is gaining momentum
as a key ingredient for the road map for new high-Tc
superconductors. Moreover, shape resonances and quantum
size effects have been also considered in the context of
superconductivity in nanofilms [66] and superfluidity in
cigar-shaped ultracold Fermi gases [67] as a possible new
driving mechanism to tune an atypical BCS–BEC crossover

Figure 4. Panel (a) the experimental isotope coefficient α as a
function of the reduced doping ν = 16δ − 2 for La2−xMxCuO4
(M = Sr dots and M = Ba squares) compared with the calculated
isotope coefficient α as a function of the Lifshitz parameter for the
case of an isotope effect (IE) driven by intraband pairing in both
bands ω11 ∝ M1/2 and ω22 ∝ M1/2, while the Josephson-like
(exchange-like) pair-transfer mechanism is isotope independent;
panel (b) calculated isotope coefficient α as a function of the
Lifshitz parameter for the case of an isotope effect (IE) only in the
intraband pairing energy in band 1 ω11 ∝ M1/2 (filled dots) and for
the case of an isotope effect (IE) only in the intraband pairing
energy in band 2 ω22 ∝ M1/2 (empty triangles).

in multi-band fermionic systems, with the appearance of
a coherent mixture of BCS-like and BEC-like condensate.
Finally, we propose that the anomalous maximum of the
isotope effect and its peculiar doping dependence in the
doping range 1/8, shown in figure 1 in La214 families,
could have its origin in a 2.5 Lifshitz transition for a
metal-to-metal transition in a multi-band multi-condensate
superconductor, for the appearance or disappearance of
small electron-like Fermi surface pocket, in agreement with
a large Nernst effect measured in the normal phase [51,
52]. Further work is needed, including in the theoretical
model electron–electron correlations and superconducting
gaps with d-wave symmetry, for a quantitative explanation
of the anomalous isotope effect in superconducting cuprates.
Our predictions can be tested by experiments of the
isotope effects in superconducting nanostructures, tuning the
chemical potential by gate voltage, and in iron chalcogenides
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superconductors, driving the chemical potential by electron
doping, around a 2.5 Lifshitz transition.
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